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VACUUM ULTRAVIOLET MEASUREMENTS OF 
REFLECTANCE AND LUMINESCENCE FROM 

VARIOUS ROCK SAMPLES 

I. JNTRODUCTION 

This s tudy i s  a cont inua t ion  of  the  work repor ted  i n  

"Reflectance of Rocks and Minerals t o  V i s i b l e  and U l t r a v i o l e t  

Radiation," Technical Letter,  NASA-32, Ju ly ,  1966, (Ref. l), i n  

which r e f l e c t a n c e  da t a  were obtained from 2300A t o  7000A with a 

Cary Model 14 MR recording spectrophotometer u t i l i z i n g  the  Model 

1411 d i f f u s e  r e f l e c t a n c e  attachment.  The o v e r a l l  ob jec t ive  of 

these s t u d i e s  i s  t o  determine i f  t he re  are s i g n i f i c a n t  d i f f e r -  

ences i n  the  spectral  r e f l e c t a n c e  or  emission from var ious  

geologica l  materials which may be used f o r  i d e n t i f i c a t i o n  and/or 

d i f f e r e n t i a t i o n  purposes i n  remote sensing app l i ca t ions .  The 

two f a c t o r s  which d i s t i n g u i s h  the  c u r r e n t  study are: 

1. The samples were i n  an evacuated chamber during 
the  measurements. This permitted the s h o r t  wave- 
length  range t o  b e  extended i n t o  t h e  so-ca l led  

than 2000A. I n  order  t o  f a c i l i t a t e  comparison 
wi th  the  previous s tudy the  s p e c t r a l  region from 
2300A t o  3000A w a s  repeated.  

"vacuum u l t r a v i o l e t ,  I 1  i .e . ,  wavelengths s h o r t e r  

2.  Measurements were made wi th  both monochromatic 
and broad band sample i l l umina t ion  u t i l i z i n g  a 
corresponding broad band and monochromatic de t ec t ion .  
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'&is permitted the separation of the reflection 

and luminescence components, which was not 

possible in the previous study. 
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A. Sample Surface Prepara t ion  

The e leven  samples s e l e c t e d  for s tudy  

source loca l i t i es  are l i s t e d  i n  Table 1. Each sa 

t o  form a one inch  by one inch s l a b  o f  about one-quarter  inch 

th i ckness .  

ca rb ide  (30 micron p a r t i c l e  s i z e ) .  This  su r face  i s  des igna ted  

a s  t h e  ''ground" surface. The o t h e r  su r face  was f u r t h e r  ground 

wi th  W 8  aluminum oxide (8  micron p a r t i c l e  s i ze )  and then  pol ished 

wi th  Linde "B" (0.05 micron) on one-quarter  inch  t h i c k  f e l t .  

This  surface i s  des igna ted  as t h e  "polished" su r face .  After  

g r ind ing  o r  po l i sh ing ,  t h e  s u r f a c e s  were r i n s e d  i n  absolu te '  

a l c o h o l  immediately p r i o r  t o  i n s e r t i o n  i n  t h e  sample measure- 

ment chamber. Care was taken so  t h a t  t h e  sample s u r f a c e s  were 

not  touched o r  contaminated i n  handling. 

One s u r f a c e  of t h e  s l a b  was ground wi th  320 s i l i c o n  

Except f o r  t h e  pumice sample t h e  surfaces of t h e  e i g h t  

rocks were t h e  same as thase  used i n  t h e  previous s tudy  of 

Reference 1. The pumice could riot be pol i shed  because of  i t s  

porous v e s i c u l a r  na ture .  I n  t h e  s l a b  s i z e  required,the pumice 

samples were somewhat f r a g i l e  and, i n  f ac t ,  t w o  samples broke , 

i n  t h e  process  of mounting i n  t h e  sample holder .  

The meteor i te  samples, e s p e c i a l l y  t h e  Coarse Octahedr i te ,  

were more d i f f i c u l t  to s i z e  and work. I n  t h e  previous s tudy  

t h e  me teo r i t e  was simply c u t  i n t o  two p a r t s ,  and t h e  c u t  s u r -  

face of one p a r t  w a s  ground and t h e  oppos i te  surface p a r t  of 

t h e  c u r t  was pol ished.  The requirement of a small s l a b  sample 

-3- 
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t o  f i t  i n t o  t h e  vacuum sample chamber i n  t h i s  work required 

more c u t t i n g  and i n  so doing the actual su r faces  used were n o t  

t h e  same as those previously examined. The Coarse Octahedr i te  

(iron-nickel) appeared as a metallic su r face  which took a high 

pol i sh ;  t h e  Hypersthene Chondrite su r face  had a mott led appearance 

wi th  some small, shiny metallic spots.  

B. Instrumentation 

A Jarrell Ash Model 78-650 one-half meter scanning 

vacuum gra t ing  monochromator of t he  Seya-Namioka type w a s  used. 

The g r a t i n g  s i z e  is 38 x 38 mm with  30,000 l i n e s  pe r  inch, blazed 

f o r  use i n  t h e  500A t o  3000A range. Monochromator s l i t  widths of 

about 0.3 mm were used, which wi th  the  instrument d i spe r s ion  of 

17A per  mm gave a band pass of about 5A. 

The source w a s  a Tanaka-Type c a p i l l a r y  discharge tube 

(Jarrell Ash Model 45-202) exc i t ing  u l t r a  pure  (99.999%)- hydrogen 

a t  15,000 v o l t s  AC and 500 milliamps. A windowless configuration 

w a s  used, i.e., t h e  source gas w a s  d i f f e r e n t i a l l y  pumped through 

t h e  en t rance  s l i t  of t h e  monochromator. In normal opera t ion  t h e  

monochromator chamber pressure  w a s  lom3 mm Hg and t h e  source chamber 

w a s  f i l l e d  wi th  hydrogen a t  about 0.5 t o  1 mm pressure. 

The d e t e c t o r  w a s  an EMI 6255B m u l t i p l i e r  phototube wi th  

an S-13 response. A t h i n  coating of sodium s a l i c y l a t e  w a s  used t o  

extend t h e  s tandard  S-13 response i n  v i s i b l e  and near  u l t r a v i o l e t  

t o  wavelengths as s h o r t  as 9OOA i n  t h e  vacuum u l t r a v i o l e t .  

-5- 



The associated circuitry,  high voltage supply, micro-micro ammeter 

and recorder, were the standard Jarrell Ash instrument package. 

The multiplier phototube had a dark current of the order of 10- 11 

amps at 1000 volts. 

of a t  least 10- 

Most of the data measurements produced signals 

amps so tha t  the detectabil i ty was generally good. 9 

C. Measurement Geometry 

A vacuum tight sample chamber was  constructed t o  

hold s ix  samples on a rotatable hexagonal wheel. 

could be attached t o  ei ther  the entrance or exit s l i t  of the 

monochromator; e i ther  the source o r  the detector could be attached 

t o  the other face of the sample chamber. The hexagonal wheel per- 

mitted each sample t o  be rotated into measurement position. The 

remaining f ive samples i n  the chamber were completely masked off 

from a direct  view of e i ther  the source or  detector. A black matte 

l i ne r  on all inside surfaces of the  chaiber served t o  reduce li&t 

scattering, and a l i gh t  baff le  was bu i l t  i n  t o  block the direct  

l i n e  of sight between source and detector. 

This chamber 

The two types of measurement geometries are illustrated 

i n  Figures 1 and 2. 

angles are 60 degrees t o  the sample surface normal.. 

geometry (Figure 1) a 10 x 15 mm sample surface area is  illuminated 

with focused, monochromatic l ight .  The sample surface is  viewed by 

In both geometries the illumination and detection 

In  the Type I 

the detector though a circular aperture of 3.6 cm diameter at  a 

centerline distance of 
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7.4 cm between sample and detector. 

sensi t ivi ty  of the detector, the recorded signal i n  

includes both the sample reflectance a t  the i 

wavelength and any ult raviolet  or vis ible  (up t o  about 6 0 0 0 ~ )  

luminescence which the incident wavelengbh excites. 

Because of the broad spectral 

In the ty'pe I1 geometry (Figure 2) the ent i re  sample 

surface i s  illuminated w i t h  the f'ull. hydrogen source spectrum. 

The sample reflectance plus luminescence is  then detected with 

spectra4 select ivi ty  through the monochromator. The monochromator 

f i e l d  of view covers a sample surface area of about 14 mm x 10 m. 

Each element within t h i s  surface area, however, i s  detected with a 

very small acceptance angle defined by the entrance s l i t  of the 

monochromator (0.3 mm x 10 mm) a t  a center l i n e  distance of 8.4 

cmbetween sample and sl i t .  

D. Measurement Methods and Standardization 

The sample chamber was loaded w i t h  ei ther f ive o r  

four samples and one o r  two reference materials for each se t  of 

measurements. 

was pumped down t o  

l ea s t  two hours before the hydrogen gas f l o w  t o  the source was 

The ent i re  uni t ,  monochromator and sample chamber, 

mm or  l e s s  pressure and outgassed for  a t  

begun. 

the hydrogen flow the monochromator pressure i s  about 

the source is  ignited and allowed t o  stabil ize.  

When a stable hydrogen gas f l o w  had been reached (with 

mm), 

In the type I1 

-9- 



geometry, where the sample chamber i s  between the source and the 

monochromator, some different ia l  pumping i s  used between the 

source and samples t o  reduce the hydrogen content a t  the samples. 

Most of the data were obtained by recording the detector 

signal as the monochromator was scanned from 3000A down t o  lOOOA 

a t  a scan rate of lOOA per minute. In all cases a reference 

piece of polished aluminum was i n  the sample chamber and was  

scanned intermittently between sample scans. 

for t he  sample scans were then normalized to  the aluminum 

reference signal at  the corresponding wavelengths. 

of the aluminum reference w a s  primarily t o  monitor the source 

output., Absolute reflectance values were eventually derived on 

The signal data 

The fhnction 

the basis of a polished copper piece which was compared t o  the 

aluminum reference. 

( R e f .  2) for  the absolute reflectance of  polished bulk copper 

The values of Ehrenreich and Phillipp 

i n  the vacuum ul t raviolet  were used t o  calibrate the  aluminum 

reference. 

The detected signal (multiplier phototube current) 

versus wavelength from the polished copper reference i n  Ty-pe I 

geometry is  shown i n  Figure 3. Also plotted i n  t h i s  figure i s  

the copper spectral reflectance curve which was used as the 

standard. 

hydrogen source spectrum, the detector spectral response, and the 

The detected signal curve shape is a function of the 

sample reflectance. Two features of the hydrogen source are 

prominent on all of the r a w  data curves; these are the hydrogen 

Lyman l i n e  at  U P j A  and the high intensity peaks around 1600~.  

-10- 
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The f ina l  standardization of tance values wa 

confbed irst when a 

and the copper standard 

compatible w i t h  t he i r  li es. Further experiments 

u t i l i z ing  fresh aluminum copper samples were then performed 

t o  establish the correct reflectance value standard. These ex- 

periments were successful i n  explaining the early discrepancy 

as being due t o  a degradation of the aluminum reference sample 

eflectance caused by the hard ul t raviolet  radiation. Fortunately, 

e original aluminum reference had been degraded during the very 

checkout runs prior  t o  the sample data runs so tha t  the aluminum 

ned as a constant secondary reference t o  which the copper standard 

could be correlated. 

To verify the reproducibility of t e s t  resul ts ,  data on 

three samples were taken twice by scanning runs on separate days 

and once a t  fixed wavelength points, where the wavelength was 

held constant while the detected signals were measured alternately 

from the samples and from reference rhaterials i n  the chamber. 

f i na l  curves derived from these samples had essentially the same 
r -- 

e-measuremeni;s. 

-12- 



I11 . DATA AND DISCUSSION 

I n  Table 1 t h e  e i g h t  rocks are l i s t e d  i n  order  of t h e  

genera l ly  expected decreasing si l ica content,  from t h e  a c i d i c  

b i o t i t e  g r a n i t e  and r h y o l i t e  t o  t h e  u l t r a -bas i c  dunite. Deta i led  

compositional and su r face  t e x t u r e  analyses have not been per- 

formed; however, these  samples are a v a i l a b l e  i f  such s t u d i e s  

are warranted. 

The normalized d a t a  curves obtained f o r  both Type I and 

Type I1 geometries of t he  same sample su r face  are presented 

i n  the Appendix. 

50 Angstrom i n t e r v a l s  except f o r  wavelengths near 1200 A and 

1600 A where t h e  source inpu t  maxima produked such sharp s lopes  

i n  s i g n a l  change on the  recorded scans (see, f o r  example, 

Figure 3) ,  t h a t  it w a s  no t  poss ib l e  t o  ob ta in  a p r e c i s e  d a t a  

point.  

Data po in t s  wereanalyzedand p l o t t e d  a t  

To determine t h e  f r a c t i o n  of energy co l l ec t ed  a t  t h e  

de t ec to r  from t h e  t o t a l  emission r e f l e c t i o n  by t h e  rock su r face ,  

t h e  de t ec to r  s o l i d  angle w a s  computed and compared 

-13- 



t o  t he  t o t a l  angle  of emission o r  r e f l e c t i o n .  The est imated 

f r a c t i o n s  from Figures  1 and 2 are spec i f i ed  below: 

a )  Type I, d i f f u s e  r e f l e c t a n c e  -- 0.06 

b )  Type I, luminescence emission -- 0.03 

c)  Type 11, d i f f u s e  r e f l e c t a n c e  -- 2 x 

d )  Type 11, liminescence emission -- 1 x 10 -4  

In both geometries the  sample su r face  normal w a s  ad jus ted  

and f ixed  so t h a t  the source and d e t e c t o r  angles  t o  the  normal 

s a t i s f i e d  the  l a w  of Specular r e f l e c t i o n ;  t h i s  w a s  observed 

by a peaking of the  response of t he  de t ec to r .  

detec t i q n  f r a c t j o n s  f o r  the specu la r ly  r e f l e c t e d  components 

are assumed t o  be  u n i t y  f o r  both geometries.  

Thus the  

Using the  above d e t e c t i o n  f r a c t i o n s  we can w r i t e  the  

equat ions f o r  the  r e l a t i v e  components of the  de tec ted  s i g n a l s .  

No specular  r e f l e c t a n c e  component i s  included i n  the "ground" 

su r face  measurements equat ions.  ' 

w r i t t e n  below wi th  the  des igna t ions  ( P - I > ,  (B-TI), ( G = I ) ,  and 

(G-XI)  wherein the  symbols P and E r e f e r  t o  the  polished and 

ground sur faces ,  and the  symbols 1 and 11 r e f e r  t o  the  

measurement geometries,  

-L 

The signal. equat ions a r e  

( p - 1 ) ~  = R s ( h )  + 0.06 Rd(A) -!- 0.03 LI 

(P-zI)h = R,(h) 2 X Rd(A) '6 LII (2 1 

(1) 

A 
The d a t a  of Reference 1 showed no s i g n i f i c a n t  d i f f e rences  
i n  ground su r face  r e f l e c t a n c e  curves wi th  o r  without the  
inc lus ion  Qf the  specular  r e f l e c t a n c e  component. 

-14- 



where : 

Rs(A) = specular reflectance at wavelength A, 

Rd(A) = diffuse reflectance at wavelength A, from 

Rt(A) = diffuse reflectance at wavelength A, from 

the polished surface, 

the ground surface, ’ 

= luminescence excited by narrow band (5A) 
energy increment at A and detected with broad 
band detector, and 

LI 

= luminescence excited by direct broad band 
source and detected with narrow band (5A) 
resolution at A .  

LII 

The L signal component as a function of wavelength I 
is the luminescence excitation spectrum. In general for 

mineral or inorganic luminescent materials, the excitation 

spectra will have a threshold and then increase as the wave- 

length decreases to a nearly constant efficiency over a broad 

range of wavelengths. 

The LII signal component as a function of wavelength 

is the luminescence emission spectrum. Luminescence emission 

will occur at longer wavelengths than the excitation wavelength. 

In a simple luminescent system the emission spectrum is a 

band with a width at half maximum intensity of several hundred 

Angstroms. Materials such as rocks may 

-15- 



have several overlapping emission bands and a very broad and/or 

complex spectrum. 

Examination of t he  components c a n t r i b u t i n g  t o  the  

normalized measured q q a n t i t i e s  ( lef t -hand s i d e s  o f  gquations 

1 - 4 ) ,  l e s d s  t o  t h e  following: 

1, 
d i f f u s e  (Rd) and luminescence (‘LII)contributions t o  
the (P-11) measurements, E q u a t i w  2,  tend t o  remove 
these  con t r ibu t ions  i n  t h i s  meapuremqnt. Therefore,  
i t  i s  highly l i k e l y  t h a t  the  (P-11) curves shown i n  
t he  Appendix e x h i b i t  predominantly the  specular  
r e f l e c t a n c e  p rope r t i e s  of the pol ished rock samples. 

2.  The (G-11) datq  curves are the v o s t  favorable  
sources  of information f o r  d e t e c t i n g  luminescence. 
The ground-surface measurements, Equations 3 and 4 ,  
remove a major con t r ibu t ion  from Specular r e f l e c t i o n ,  
i n  c o n t r a s t  t o  those from the polished sur face ,  
Equations 1 and 2. Thus, the  ground-surface measure- 
ments leave only the d i f f u s e  r e f l e c t i o n  component t o  
compete with the  luminescence emission in  da ta  i n t e r -  
p r e t a t i o n .  
can b e  deduced d i r e c t l y  from Equations 3 and 4 ;  the  
e f f e c t s  of d i f f e r i n g  source i n t e n s i t i e s  emplayed i n  the  
two geometries have been removed i n  phese equations by 
normalizat ion of the (G-I) and (6-11) values  measured. 

The extremely small c o e f f i c i e n t s  modifying the  

A comparison of  the  LI and LII i n t e n s i t i e s  

Solving Equations 3 and 4 simultaneously t o  remove the 
1 d i f f u s e  ref leCtgnce con t r ibu to r ,  Rd, one obta ins ,  

For a l l  rock samples inves t iga t ed ,  the  normalized da ta  valves  

-16- 



indicate that, 

(GI) 43(GII) ( 6 )  

So that, i n  a l l  cases LII is  greater than LI and th  

which indicates the advantage of the (G-TI) data curves over 

the (G-I) data fo r  detection of lumlhescence. The Appendix 

curves for  the ground surfaces tend to corroborate th i s  since 

the Type I1 geometry data exhibits considerably more peaking 

than does the Type I data. 

as probable evidence of luminescence. 

Such peaking has been interpreted 

-17- 



Polished Surface - Type I Geometry: 1000-1800 A, a 

l a r g e  continuous inc rease  i n  va lue  wi th  i n f l e c t i o n s  around 

1400 and 1600; 1800.-2000 A, a broad maximpm; 2000~3000 A, a 

moderate continuous decrease i n  value.  

Groupd Surface - Type I Geometry: 1000-2000 A; similar 

t o  Pol ished - Type 11; 2000-3000 A values  increase with gradual  

s lope  ( e s s e n t i g f l y  an invers ion  of Polished - Type I1 behavior).  

Ground Surface - Type I1 Geometry: Note t h a t  these 

s i g n a l s  are r e l a t i v e l y  low and s u b j e c t  tQ larger errors i Q  da t a  

poin ts .  There i s  a resolved maximum peals q t  2400 A i n  a l l  

samples and a pecondary maximum around 1800 A, An i n f l e c t i o n  

o r  peaking a t  2050 is also ind ica t ed .  Any s t r u c t v r e  i n  curve 

shape below 1700 i s  quest ionable .  

2. Group 2 - Monzonite, d i o r i t e ,  obs id ian  

Pol ished Surface - Type I1 Geometry: 1000-2050 A,  

continuously inc reas ing  va lues  r i s i n g  t o  a sharp peak a t  2050; 

2050-3000, same as Group I. 

Polished Surface  - Type I Geometry: 1000-1800 A, a 

very pronounced maximum peak about 1650; 1800-3000 A, same 

as Group 1. 

Ground Surface - Type 1 Geometry: gene ra l ly  similar 

t o  Group 1 except f o r  obsidian whose value s t a y s  about cons t an t  

from 1800-3Q00 A. 

Grwmd Surface - Type 11 Geometry; p m z o n i t e  and 

d i o r i t e  have t h e i r  mqximum peak a t  2050 with an i nd ica t ion  of 

-18- 



a secondary peak around 2400. 

similar t o  Group 1, i n  contrast t o  i t s  polished surface 

behavior. 

3. Rhyolite and Gabbro 

Obsidian's curve shape is  

Polished Surface - '.r5pe I1 Geometry: rhyolite tends 

toward Group 2 shape while gabbro tends toward Group 1 I shape. 

Polished Surface - Type I Geometry: Both samples look 

most similar t o  Group 2 curves. 

Ground Surface - Type I Geometry: similar t o  Group 1 

shape rhyolite has a sharp break a t  2400 with a very strong 

increase up t o  3000. 

Ground Surface - Type I1 Geometry: same as Group 1 

curves . 
4. Eunice 

m e  I Geometry: generally similar curves t o  Group 1. 

Type I1 Geometry: the pumice surface nuItiber 3 (see 

curve (1, 3) f i t s  the Group 1 curve shape; pumice surface 

number 2, however, has an anomalous &ape intermediate t o  the 

two basic groups. 

5. Meteorites - Hypersthene Chondrite and Coarse 

Octahedrit e 

As mentioned ear l ie r  these samples had surfaces different 

I fromthe rocks. Also the measurements were only performed i n  

the point by point technique a t  100 A intervals. 

w e r s t h e n e  Chondrite (mottled surface): Type I 

geometry between 1000-2600 A appears similar t o  Group 1 - ground 



su r face  d a t a  wi th  a sharp inc rease  around 1800; 2600-3000, 

va lues  decrease similar t o  pol ished su r face  rock da ta .  Type TI 

geometry curve i s  unique wi th  a broad maximum peaking a t  2300 A. 

Coarse Octahedr i te  (high meta l - l ike  po l i sh ) :  Type I 

geometry curve appears l i k e  a pol ished metal r e f l e c t a n c e  curve,  

no te  the  high r e f l e c t a n c e  va lues ,  Type I1 geometry curve does 

i n d i c a t e  some poss ib l e  s t r u c t u r e ,  more d a t a  po in t s  would be 

necessary to confirm t h i s .  

-20- 



IV. OBSERVATIONS 

1. All qamples, both groun 

reflectance values a 

between 1000 A tQ 200 

between 1400 A and 2000 A,  

2. As the wavelength increases from 2000 A t o  3000 A, the 

spectral  reflectance decreases for polished surgaees and 

increases f o r  ground surfacse;. The largest: r e l a t ive  dltffewences 

i n  slope values o f  the curves occur for  the gFound surfaces. 

3 .  

in  that  one o r  more re la t ive ly  aharp peaks and changes i n  

slope direct ion @re common for a l l  ground surfaces. 

sharp peaks and chapges i n  slope are noted for  the polished 

surfaces. These and other simPZarities i n  gross aspects of 

the curves suggest that  surface texture ra ther  than composition 

a re  major factors  i n  determining spectral  reflectance,  par t ie-  

ular ly  a t  wavelengths shorter than 2000 A. 

The gross  aspects o f  the ground Surfaces are  similar 

Fewer 

4. The general curve charac t e r i s  t i c s  for monaonite and 

d i o r i t e  a re  markedly similar to  each Qther, and lgkewise, 

markedly diss imilar  ta  rocks of more acidic  and basic composition, 

However, cuwe character is t ics  of other rock types bear no 

relat ion to composition. F Q ~  example, curves for polished 

b i o t i t e  grani te  are more siprilar t o  curves fgn dunite, an 

ult rabasic  rack unrelated compositionally, than they are  t o  

rhyol i te  which f s  composttionally similar to  granite.  
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5. A l l  rocks showed a luminescence emissgon at about 

2400 A, while monzopiteand diarite had their peak 

at 2050 A. 

distinctly exciting luminescenqe, but withaut a correlation 

with the emission bands it is not possib le  to estimate the 

observable emission under solar illumination. 

The high source htenslty around 1600 A was 

-22- 



v. CONCLUSXONS AND PLANS FOR FUTURE WORK 

Although i n i t i a l  analyses o f  monzonite and d i o r i t e  a t  

wavelengths shorter  than 3000 A spggest a correlat 

composition and UV spectral response, other rock samples of 

more acidic  and basic composition displayed l i t t l e  or  no 

correspondence with the i r  spec t ra l  reflectance curves. Qui te  

possibly t h i s  lack of correspondence i s  due to  dLEferences i n  

surface texture between the sample surfaces. Although ident ica l  

abrasives were used t o  prepare a l l  sample surfaces, i t  i s  

possible that: the standard roqk polgshing methods used axe 

inadequate, especial ly  a t  wavelengths shorter  than 20QO A 

where i r r egu la r i t i e s  i n  the surface may be comparatively 

large with respect  t o  wavelength, 

It is also poagible tha t  surface preparation of the 

samples  may somehow modify the mqlecular s t ruc ture  of the 

surface layer so  t h a t  the emlqsion spectrum i s  albered o r  

quenched. It would be  desirable i n  fucure work fp include 

several  samples ranging from highly polished to f ine ly  powdered 

(-50 A),  prepared from the same specimen, i n  order tha t  the  . 

e f fec t  of surface texture QII both reflqctence and emission 

may be studied, 
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APPENDIX - 
DATA CURVES 

A 



APPENDIX 
Table  o f  Cantqnts 

DATA CURVES: 

B i Q t % t @  granite , polished 

ground 

Rhyolite, polished 

ground 

Monz oni t e ,  p o 1 i s  bred 

grovnd 

Diorite,  p Q l i s h e d  

ground 

Gabbro, polished 

ground 

Basalt, polished 

grQund 

Dunite, polished 

ground 

Obsidian, polished 

grqund 

PufniceJ (designbted 1, 3)  

% Pumice, (designated 2, 2)  

Hypersthene chondrite, mottled surface 

Coarse octakedrite, high polished surface 
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